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ABSTRACT

Born’s valence force-field model (VFM) established a theoretical scheme for calculating the elasticity, zero-point optical mode, and lattice
dynamics of diamond and diamond-structured solids. In particular, the model enabled the derivation of a numerical relation between the elastic
moduli and the Raman-active F2g mode for diamond. Here, we establish a relation between the diamond Raman frequency ω and the bulk
modulus K through first-principles calculation, rather than extrapolation. The calculated K exhibits a combined uncertainty of less than 5.4%
compared with the results obtained from the analytical equation of the VFM. The results not only validate Born’s classic model but also provide a
robustK–ω functional relation extending tomegabar pressures, which we use to construct a primary pressure scale through Raman spectroscopy
and the crystal structure of diamond. Our computations also suggest that currently used pressure gaugesmay seriously overestimate pressures in
themulti-megabar regime. A revised primary scale is urgently needed for such ultrahigh pressure experiments, with possible implications for hot
superconductors, ultra-dense hydrogen, and the structure of the Earth’s core.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0069479

I. INTRODUCTION

The valence force-fieldmodel (VFM), initially proposed by Born
and co-workers more than a century ago,1 is among the most useful
approaches to deal analytically with the short-range valence forces in
tetrahedrally coordinated crystals. In the VFM, the interactions in
such systems are decomposed into bond-stretching and bond-
bending forces. For solids with strong covalent bonding, where
atom pair bonds play an essential role, the model is able to give a
concise description of elastic properties. For example, the VFM has
been most successful in describing the interactive forces in diamond
and diamond-like structures,2 and it has been used to derive explicit
formulas for the elastic constants and further relate them to the triply
degenerate F2g optical mode,3

ωVFM � 8(k1 + 4k2)
3M

[ ]1/2

, (1)

where ωVFM is the frequency of the diamond F2g mode, k1 and k2 are
the bond stretching and bond bending force constants for the har-
monic part of the potential for diamond vibration, and M is the

average atomic mass. In this equation, the anharmonic part of the
carbon vibrations is ignored. Neglecting the bond bending term 4k2
and expanding the free-energy terms of force constant, Vogelgesang
et al.3 simplified Eq. (1) as follows:

ωVFM � 8Ka

M
( )1/2

, (2)

where K is the bulk modulus and a is the lattice parameter of the
diamond cubic structure. Using the VFM together with results
from both Brillouin scattering and Raman spectroscopy, it has
been possible to synchronize the optical mode frequency [the left
hand side of Eq. (2)] and the elastic properties [the right-hand side
of Eq. (2)] of diamond, silicon, and germanium under ambient
conditions.

The coupling of elastic and optical properties in the framework
of the VFM is critical for establishing an ab initio rule for the pressure
parameter, which is fundamental for high-pressure sciences. In its
simplest form, pressure p is the amount of force F applied perpen-
dicular to a surface area S:
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p � F

S
. (3)

However, neither F nor S can be easily measured inside the confined
space of a pressurized apparatus. In addition, a limited variety of
probes are available for suchmeasurements. One possible approach is
to use the integral of the bulk modulus with respect to volume, which
follows from the relation

dp

dV
� −

K

V
, (4)

although this relies on the possibility of calculatingK directly from the
Raman frequency of a pressure standard (e.g., diamond) at the
corresponding volumes.

Deriving a high-quality, absolute primary scale is critical for high-
pressure studies but remains a challenging task.4,5 Very early pressure
scales were provided by dynamic compression using shock waves
together with the equation of state (EOS) of NaCl.4 However, although
shock-wave experiments achieve volume compression, there are also
changes in internal energy, in addition to isentropic compression work
corresponding to the observed density, leading to the so-called thermal
pressure. This technical challenge has recently been partially overcome
by employing multishock compression and precisely controlled
compression wavelets such that shocks are delayed until after the
experiment, in which there is forced compression along an adiabatic
path.6 For static compression, Zha et al.7 constructed a primary
pressure scale on the basis of Eq. (4) using a combined high-pressure
Brillouin scattering andRaman spectroscopy system for polycrystalline
MgO up to 55 GPa. This pressure range was later extended to 120 GPa
by Murakami and Takata,8 using single-crystal MgO. The Brillouin
scattering method provided the key information about elastic prop-
erties that was used for integrating the pressure. However, this method
encountered difficulties with increasing pressure, because of the signal
attenuation from Brillouin scattering spectroscopy and possibly the
limited phase stability ofMgO, which transforms to the B2 phase in the
multi-megabar range.9 There have also been attempts to use theoretical
simulations to construct primary pressure scales based on cubic SiC,10

despite its tendency to become structurally unstable above 40 GPa.11

The abovementioned experimental limitations have motivated us to
develop a robust primary pressure scale, preferably based on diamond,
one of the hardest known materials,12,13 under multi-megabar
pressures.14

This work evaluates the validity of theVFM in diamond up to the
terapascal pressure level, with the aim of establishing a primary
pressure scale through an analytical relation between elastic and
optical properties, namely, the K–ω relation. Both properties are
calculated byfirst-principles computations, rather than extrapolation.
Specifically, the elastic constantmatrix of diamond at various volumes
is obtained from the classic strain–stress relation. The gamma-
centered optical mode ωLTO is calculated by perturbing carbon
atoms, i.e., through density functional perturbation theory (DFPT).
Using the VFM, K is also calculated by rearranging Eq. (2) to

KVFM � Mω2
LTO

8 a
. (5)

For validation, the result is then compared with the bulk
modulus obtained from the lattice stress–strain relation, KLATT, at
various volumes:

KLATT � 1 + σ( )KVFM, (6)

where σ is the theoretical uncertainty of the bulkmodulus using VFM
and will be evaluated as a function of volume. We also perform an
integration to calculate the pressure and estimate the total uncertainty
at the end of the study. The theoreticalK–ω relation obtained here is a
preliminary result, but it provides a basis on which opportunities can
be explored to establish a practical primary pressure scale through
static compression experiments.

II. COMPUTATIONAL METHOD

Our computation was implemented on the basis of density
functional theory (DFT) and the projector augmented wave (PAW)
method15 in the Vienna ab initio Simulation Package (VASP), version
5.4.4.16 The exchange-correlation energy was parameterized by a re-
vised Perdew–Burke–Ernzerhof functional for solids (PBEsol).17 The
core radius for carbon was taken as 1.128 Å. The Brillouin zone was
sampled at a rate of 0.2 Å−1, and the plane-wave basis set cutoff energy
was taken as 1000 eV. The choices of a hard pseudopotential and a large
energy cutoff were found to be sufficient to converge the interatomic
force to within 5 meV/Å. We performed calculations for both unit cell
and supercell (2 3 2 3 2 and 3 3 3 3 3) diamond to check the size
effect. Calculations were conducted at various volumes withminimum
V/V0 � 0.507. Besides PBEsol, we also employed the PBE,15

Perdew–Wang 91,18 and local density approximation19 approaches to
describe the exchange-correlation energy for the same calculation, and
they achieved good agreement in the K–ω relation, as shown below.

We calculated the 0 K isothermal elastic constant matrix using
the strain–stress relation20 and the bulk modulus of diamond, KLATT,
using the Voigt–Reuss–Hill averaging scheme.21 On the other hand,
we calculated the optical mode of diamond through the DFPT
method, perturbing the carbon atoms and constructing a Hessian
matrix consisting of the second derivatives of energies. This was on
the basis of a quasi-harmonic approximation.We then used the VFM
[Eq. (5)] to calculate the KVFM of diamond. We should note that
calculation ofKVFM byDFPT and the VFM is fundamentally different
from themethod of strain–stress relation (givingKLATT), the inputs to
which are the responses to external strains, not vibrational properties.

It is worth mentioning that each diamond structure was opti-
mized for atomic position and cell variables at fixed volume (orV/V0).
Results used for compression experiments should consider pressure
correction of the elastic constant, which has been well
documented.22,23

III. VFM FOR DIAMOND UP TO 1 TPa

The diamond structure is optimized at various volumes. For
example, V/V0 � 0.507 corresponds to 1 TPa according to the Pulay
stress. However, we intentionally discarded the parameter p as an
input throughout our calculation, because our specific goal was to
construct a primary pressure scale. The size of the supercell is known to
affect simulation results,24 and we performed the same set of simu-
lations for a selection of supercell sizes. Before proceeding to com-
pressed volumes, we checked our calculated bulk modulus and
shearmodulusG at ambient pressure. The results ofK� 450.6GPa and
G � 534.1 GPa matched well with those from the experimental EOS
[K � 446(1) GPa],25 the Brillouin scattering method [K � 445(1) GPa
and G � 538(1) GPa],3 ultrasonic determination [K � 442(5) GPa and
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G � 538(6) GPa],26 and a previous first-principles simulation,27 and
thus our theoretical approach is capable of producing good-quality
results. In Fig. 1, we plot the value of the uncertainty σ as defined in Eq.
(6) vs the change in volume and compare the data with experimental
results from Occelli et al.25

In principle, our first-principles simulation yielded a reasonable
uncertainty σ. The size of the supercell has a moderate effect on the
result. For example, in a unit cell of diamond, the σ values converged
to ∼0.13 at more compressed volumes, whereas the calculations using
supercells exhibited a turning point of σ at V/V0 around 0.73. The
inconsistency may come from the contribution of long-wavelength
acoustic phonons, which was overcome by choosing a larger simu-
lation supercell.28 In general, supercells greater than 2 3 2 3 2 only
resulted in minor improvement. In the rest of this paper, without
specifying the supercell size, we only show results from the 33 33 3
supercell.

Another important source of error may stem from the pseu-
dopotential used in the simulations, which is intrinsic. This can be
cross-checked against the experimental optical mode frequency atV0,
which has been reported by various studies.3,29 This error applies to
the values calculated from both the VFM and DFPT. For example, at
ambient pressure, the F2g mode frequency of natural diamond is
1332.4 cm−1, while our first-principles calculation gave 1349 cm−1

with the VFM and 1325 cm−1 with DFPT. These calculated values are
usually tolerable for comparing experimental and simulation results.
However, the error needs to be taken into consideration in the
construction of a primary pressure scale, since it will increase the
uncertainty in bulkmodulus atmore compressed volumes. Therefore,
we shifted ωVFM to be equal to ωLTO at V0 such that at ambient
pressure, the uncertainty σ was normalized to 0 (the red and purple
curves in Fig. 1). By shifting the zero-point frequency, the maximum
uncertainty in bulk modulus using the VFM is 5.4%. Our results
suggest that even with the bond bending term neglected, the VFM can

still describe the elasticity and bond vibration of diamond with
reasonably small uncertainty up to terapascal pressures.

It has not escaped our notice that the σ from the fitted exper-
imental data of Occelli et al.25 diverged and σ blew up to greater than
0.24 at relatively high V/V0 ratio (the orange curve in Fig. 1). In
deriving the VFM equation, Vogelgesang et al.3 expanded the free
energy F in terms of volume [Eq. (7) in Ref. 3]:

ΔF � 1
2
(ΔV)2 z2F

zV2( ) + · · · ≈ (ΔV)2B
2V

, (7)

whereΔF is the change inHelmholtz free energy due to a perturbation
ΔV of the volume. This expansion is no longer valid under stress,
because the second-order elastic constants should be corrected for the
pV term, and the expression for the bulk modulus will consequently
change.22,23 The simplest example for cubic diamond under hy-
drostatic pressure is as follows:

c11 � 1
V

z2G

ze21
( )

T�0
,

c12 � 1
V

z2G

ze1ze2
( )

T�0
+ p,

K � c11 + 2c12
3

,

(8)

whereG is theGibbs free energy and ei is the strain. Using the rawdata
points (volume and bulk modulus) from Occelli et al.25 and a revised
formula for KVFM, the VFM is able to reproduce the KLATT from the
EOS (the blue circles in Fig. 1) with an uncertainty of 4% or less. The
experimental performance is even better than that of simulation within
the same volume range. It is therefore important to process the bulk
modulus data with caution when interpreting experimental results.

IV. A PRIMARY PRESSURE SCALE USING DIAMOND
AND THE VFM

The most challenging part of establishing a primary scale is to
obtain the elasticity of diamond under high pressure. Instead of
directly determining the absolute K, the VFM can, through Eq. (2),
link elastic properties with optical properties determined by Raman
spectroscopy and x-ray diffraction, which have become routine
probes for samples at multi-megabar pressures in diamond anvil cell
(DACs).We plot the F2gmode frequency of diamond vsK in Fig. 2(a),
which is an important step before performing the pressure integral
[Eq. (4)]. It is then necessary to perform error analysis to examine the
validity of the K–ω relation. Figure 2(a) shows that ω reaches its
maximum theoretical uncertainty (3.7%) when KLATT ≈ 1100 GPa,
equivalent to a volume of ∼4 Å3/atom. This is due to the crossover of
K′

LATT and K′
VFM, indicating that according to the VFM, diamond is

more compressible than predicted by DFT. In other words, the
simplified VFM starts to underestimate C–C interactions beyond this
critical point, although this simplification is still able to predict values
of the bulk modulus with reasonable uncertainties. We fit our DFT
results using a second-order polynomial

ω � aK2 + bK + c, (9)

FIG. 1. Uncertainty σ plotted vs volume change. The bulk modulus calculated for
33 33 3 and 23 23 2 supercells was also corrected for V0 zero-volume shift,
and the shifted results are plotted in different colors (purple and red curves,
respectively). The orange curve shows the fitted data from Occelli et al.25 The open
circles are experimental data from Occelli et al.25 with a correction for pressure
according to Eq. (8).
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with a � −0.591(1) 3 10−5 (cm GPa2)−1, b � 0.667(2) (cm GPa)−1,
and c � 1051(1) cm−1. The fitting yields an R2 of 0.9997. This is a
robust relation, which is within reasonable error of those obtained
by the VFM and is almost unbiased by the choice of pseudopotential
[Fig. 2(b)].

We integrate our data according to Eqs. (4) and (8) and plot the
diamond Raman peak vs accumulated pressure in Fig. 3. The results
are compared with those obtained by Fratanduono et al.6 and
Akahama and Kawamura29 using diamond Raman edge gauges and
with those obtained by Dubrovinskaia et al.30 using a polycrystalline

FIG. 2. Frequency of diamond F2g mode vs bulk modulus K. (a) Comparison of the bulk modulus calculated from the strain–stress relation (KLATT) that calculated from the VFM
(KVFM), and KLATT after the application of a zero-shift. (b) Diamond Raman frequency vs KLATT after application of a zero-shift, for different exchange-correlation functionals
in the pseudopotential.

FIG. 3. Diamond Raman peak vs accumulated pressure. The results from the VFM (open circles) and DFPT (solid circles) are compared with results obtained by Fratanduono
et al.6 (red solid and dashed lines) and Akahama and Kawamura29 (blue solid and dashed lines) using diamondRaman edge gauges and by Dubrovinskaia et al.30 (green solid and
dashed lines) using a polycrystalline diamond gauge. The blue shaded region represents the theoretical uncertainty. For the diamond Raman edge gauges, the behavior as a
function of pressure is divided into high-pressure (HP, >300 GPa) and low-pressure (LP, <300 GPa) regimes.
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diamond gauge. We note that both of the diamond Raman edge
gauges6,29 divided the pressure into two regimes and employed
different functions for each of these.With the diamond gauge used by
Dubrovinskaia et al.,30 the measurements were performed on a di-
amond chip inside the sample chamber, rather than on the diamond
anvil itself. Our results show excellent agreement with those from the
diamond chip Raman gauge within the experimental pressure range
(0–270 GPa) and good agreement (<3% difference) with both of the
diamond Raman edge gauges below megabar pressures. However, at
higher pressures, our scale gives lower frequency values. For instance,
extrapolation from the diamond Raman edge gauges overestimates
the pressure at above 150 GPa and completely diverges, with >50%
difference, when the pressure is above 500 GPa.

We should note that the divergence stems from themethodology
rather than the experimental procedure, although all of the above-
mentionedmethods use diamond as the calibrant. A diamond Raman
edge gauge measures the first derivative of the diamond Raman peak
at the center of the diamond anvil, the tail shape of whose spectrum is
generated by the pressure gradient over the anvil culet. The cupping
and even double cupping behavior of a beveled diamond anvil will
generate a complex pressure distribution on the culet surface and thus
distort the spectrum of the diamond peak at more compressed
volumes.31 In the case of a primary pressure scale, the diamondwill be
put into the sample chamber,30 and the observed Raman spectrum
will have a single peak corresponding to the triply degenerate F2g
mode, similar to that found by Dubrovinskaia et al.30 Differences in
the ways in which experiments are performed have led to substantial

deviations when the pressure is close to or beyond the deformation
limit of single-crystal diamond.31

The plot of pressure residual vs absolute (integrated) pressure in
Fig. 4 reflects the excellent match between the integrated pressure and
the standard pressure pstd. In this work, pstd is regarded as an in-
dependent checkpoint for the VFM. For example, in our computa-
tions, pstd is taken to be the Pulay stress, which is the diagonal
component of the stress tensor. In the work by Occelli et al.,25 the
secondary ruby gauge pressure was chosen as pstd. The validity of the
VFM and our proposed K–ω relation is verified by the experimental
results of Occelli et al.25 (inset of Fig. 4) and theoretical calculations.
Up to∼1TPa pressure, the pressure residual is no greater than 10GPa,
which is particularly useful for calibrations in the multi-megabar
pressure range.

V. DISCUSSION AND CONCLUSION

A primary scale is rarely used in high-pressure experiments.
Instead, ruby, Raman, and x-ray gauges have been used over greatly
extended pressure ranges by extrapolating literature data or
achieving pressure self-consistency,5,32 however, even so, they must
ultimately be tied to a primary scale. This leaves room for systematic
discrepancies when different standards are used, particularly at el-
evated pressures and temperatures.33 Therefore, a high-precision
primary scale up to multi-megabar pressures is an urgent require-
ment for ultrahigh-pressure experiments. Diamond has a number of
advantages as a basis on which such a scale can be established. It

FIG. 4.Pressure residual vs integrated pressure. For our theoretical calculation, we used the Pulay stress as the standard pressure. For the results of Occelli et al.25 (also shown on
an expanded scale in the inset), the integrated pressure is compared against an experimental ruby gauge. pstd, standard pressure.
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features very strong C–C covalent bonding, which is ideal for
implementing the VFM. It is also thermodynamically stable
throughout the pressure range achievable in current static com-
pression experiments.14,34 The diamond Raman edge gauge has been
de facto among the most popular calibrants for high-pressure ex-
periments because of the popularity of DAC.35,36 A primary pressure
scale for diamond will not only satisfy the requirements for
ultrahigh-pressure experimentation but also streamline pressure
calibrations for all DAC users.

The theoretical pressure scale using diamond and the VFM
agrees well with previous primary scales7,8 and also with the latest
shock compression experiments6 up to megabar pressures, but ex-
hibits substantial differences at higher pressures (Fig. 3). These sizable
inconsistencies in pressure will not reduce the importance of recent
highlights in ultrahigh-pressure work, including hot superconduc-
tors37,38 and dense metal-like hydrogen,39 although they may lead to
lower values of their onset pressures and further constrain the phase
stability fields. However, large overestimates of pressure will be a
hurdle in interpreting experimental data in the earth sciences. For
example, pressures in Earth’s core cover awide range of 140–360GPa,
and estimation of light element content relies heavily on the structure
and the EOS of iron.40 Our results suggest that the overestimated
pressures given by themostwidely used pressure gaugeswill indicate a
much “lighter” Earth’s core, and, as a consequence, existing models
will suffer considerable density deficits. Therefore, an additional
number of volatile elements may need to be incorporated into the
conventional light-element-free inner core, leading to a revision of the
currently accepted large-scale element budget and geochemical
condition of the core.41

In short, a robust primary pressure scale that extends to multi-
megabar pressures is vital for the next generation of experiments
under extreme conditions. The classic VFM is a powerful tool to verify
the K–ω relation (Fig. 2) at terapascal pressures, and theoretical
uncertainties will not accumulate with increasing pressure. Our study
lays the foundations for a path to establish a primary pressure scale
using currently available structural and optical probes, which could
contribute to many aspects of high-pressure sciences.
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